ASSIGNMENT - 6
EX 2.2
CLASS 10th
$>$ If α (alpha) and β (beta) are zeroes of a quadratic polynomial $\mathrm{P}(\mathrm{x})=\mathrm{ax}^{2}+\mathrm{bx}+\mathrm{c}, \mathrm{a} \neq 0$.
Sum of zeroes $=\alpha+\beta=\frac{-(\text { coefficient of } x)}{\text { coefficient of } \mathrm{x}^{2}}=\frac{-b}{a}$
Product of zeroes $=\alpha \beta=\frac{\text { constant term }}{\text { coefficient of } \mathrm{x}^{2}}=\frac{c}{a}$
Example: Find the zeroes of polynomial $x^{2}-2 x-8$ and verify the relationship between zeroes and coefficients.
Solutions: $x^{2}-2 x-8=x^{2}-4 x+2 x-8$

$$
\begin{aligned}
& =x(x-4)+2(x-4) \\
& =(x+2)(x-4) \\
\therefore \quad x+2 & =0 \text { or } x-4=0
\end{aligned}
$$

So, $x=-2$ and $x=4$
\therefore Value of $\mathrm{x}^{2}-2 \mathrm{x}-8$ is zero when $\mathrm{x}=-2$ or $\mathrm{x}=4$
$\therefore \quad$ Sum of zeroes $=-2+4=2=\frac{-(-2)}{1}=\frac{-(\text { coefficient of } x)}{\text { coefficient of } \mathrm{x}^{2}}=\frac{-b}{a}$
Product of zeroes $=-2 \times 4=-8=\frac{-8}{1}=\frac{\text { constant term }}{\text { coefficient of } \mathrm{x}^{2}}=\frac{c}{a}$
$>$ If we know sum of zeroes and product of zeroes, we can find quadratic polynomial
Quadratic polynomial $=x^{2}-S x+P$
Here, S -- sum of zeroes $=\alpha+\beta$
P--- Product of zeroes $=\alpha \beta$
Example: Find quadratic polynomial if sum of zeroes is $\frac{1}{4}$ and product of zeroes is -1 .
Solution: $\mathrm{S}=\alpha+\beta=\frac{1}{4}, \mathrm{P}=\alpha \beta=-1$

$$
\begin{aligned}
\therefore \text { Quadratic Polynomial } & =\mathrm{x}^{2}-\mathrm{Sx}+\mathrm{P} \\
& =\mathrm{x}^{2}-\frac{1}{4} \mathrm{x}+(-1) \\
& =\mathrm{x}^{2}-\frac{x}{4}-1
\end{aligned}
$$

If we want to remove 4 from the denominator then multiply quadratic polynomial by 4
Quadratic polynomial $=4 \times \mathrm{x}^{2}-4 \times \frac{x}{4}-4 \times 1$

$$
=4 x^{2}-x-4
$$

Both answers are correct.

HOME WORK:

1. Find the Zeroes of polynomial and verify relationship between zeroes and coefficient.
a) $6 x^{2}-7 x-3$
b) $3 x^{2}-x-4$
2. If sum of zeroes is 4 and product of zeroes is 1 , find the quadratic polynomial.
